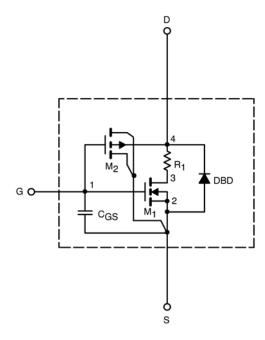


SPICE Device Model Si4896DY Vishay Siliconix

N-Channel 80-V (D-S) MOSFET

CHARACTERISTICS

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- · Apply for both Linear and Switching Application
- Accurate over the –55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to $125^{\circ}\mathrm{C}$ temperature ranges under the pulsed 0 to $-5\mathrm{V}$ gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

SUBCIRCUIT MODEL SCHEMATIC

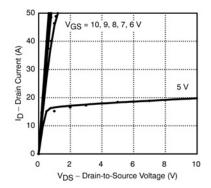
This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

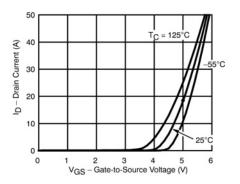
Document Number: 71562 www.vishay.com 18-May-04 1562

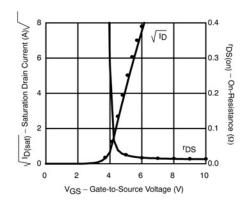
SPICE Device Model Si4896DY

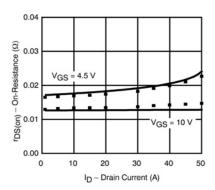
Vishay Siliconix

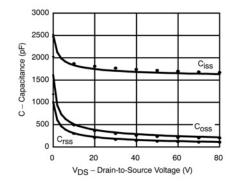
SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)				
Parameter	Symbol	Test Conditions	Typical	Unit
Static				
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2.63	V
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, V_{GS}$ = 10 V	319	Α
Drain-Source On-State Resistance ^a	r	$V_{GS} = 10 \text{ V}, I_D = 10 \text{ A}$	0.0127	Ω
	r _{DS(on)}	$V_{GS} = 6 \text{ V}, I_{D} = 8 \text{ A}$	0.0175	
Forward Transconductance ^a	g _{fs}	$V_{DS} = 15 \text{ V}, I_{D} = 10 \text{ A}$	24	S
Diode Forward Voltage ^a	V _{SD}	I_S = 2.8 A, V_{GS} = 0 V	0.83	V
Dynamic ^b				
Total Gate Charge	Q _g	V_{DS} = 40 V, V_{GS} = 10 V, I_{D} = 10 A	37.6	nC
Gate-Source Charge	Q_{gs}		7.5	
Gate-Drain Charge	Q_{gd}		11	
Turn-On Delay Time	t _{d(on)}	$V_{DD}=40~V,~R_L=40~\Omega$ $I_D\cong 1~A,~V_{GEN}=10~V,~R_G=6~\Omega$ $I_F=2.8~A,~di/dt=100~A/\mu s$	18	ns
Rise Time	t _r		22	
Turn-Off Delay Time	$t_{d(off)}$		30	
Fall Time	t _f		45	
Source-Drain Reverse Recovery Time	t _{rr}		40	

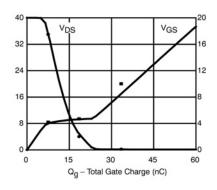

www.vishay.com Document Number: 71562


a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing.




SPICE Device Model Si4896DY Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data.

Document Number: 71562 www.vishay.com 18-May-04